Computer Science

Curriculum Intent Overview

At Ripley Academy we offer the OCR GCSE in Computer Science at Key Stage 4. This is where our intent begins as we have plan to prepare students for an opportunity to engage in either strand come Key Stage 4.

"The intention is simple. We aim to support and offer all students the chance to become the best computational thinkers they can be. By strengthening their understanding of the links between the hardware architecture and efficiency of an algorithm, our students will aim to become creative and logical thinkers who have the ability to articulate the relationship between application use, programming and the performance of the machine, whilst also having a plethora of experience allowing them to express their creativity"

Computer Science Strand

Computer Science is firstly the study of computational thinking and logic. However, our curriculum intends to give our students a wider understanding of how the topics within this subject area connect. One's ability to think computationally can be expressed via an ability to solve problems using precise instructions. Therefore, we explore and learn computational thinking via exposing our students to different programming languages and problems. Programming is at the heart of our Key Stage 3 Computer Science strand. We study programming to help us think in a more logical way, however, to gain a wider understanding of why we need to be efficient lends us to connect the ability to link efficient solutions to the architectural design of the computer itself. Although we intend to support the development of our students as computational thinkers and logicians it is important that we continue to explore the hardware in order to gain a deeper understanding of how an efficient design impacts on performance. Exploring how we eventually lead us to how we arrived at the world we live in today. A world in which this hardware is connected via computer networks. Our learning journey continues as we explorer how these hardware connection work as well as the impact and issues that have arisen as a result of its development.

Creative Computing Strand

The development of computer science would be worthless, if it wasn't for the ability to use the technology creatively to make an impact on the world around us. Our second strand of development that flows within our curriculum is that of Creative Computing. Creative Computing allows our students to use the hardware and software to undertake creative projects via multiple applications in order to meet the needs of users. The Creative strand is the foundation to our support those students who will utilise their IT skills in future ventures which lie away from computational thinking. This strand offers students the opportunity to express their creatively and individuality. It supports their understanding of the computer as a usable system, as we expose them to different interfaces and applications, supporting their organisational and digital literacy skills. As a key element of the National Curriculum, Digital Literacy is embedded into both strands but directly focused on in the Creative Computing Strand. Student we be offered to learn and express skills in digital animation, computer graphics, audio development and interactive media. During the study of these areas, students will use the best commercially available software to design and develop solutions for different audience and purposes. Our curriculum design intends to interleave back into the creative strand the understanding of how the computer represents the data within multimedia.

We endeavour to make both sides of our curriculum as fun and as interesting as possible, coupled with a high level of challenge, in order to excite and engage our students in their learning. Our aim is to ensure that students develop a computing capability that is directly transferable, not only to other subjects but also to the KS4 curriculum and beyond.

Both strands of our curriculum map into the Secondary National Curriculum and are subject to an on-going and rigorous review process. Using our analysis of data and our continuing strive to improve teaching and learning, we endeavour to ensure that the curriculum is effective in meeting the needs of all students.

"In Computer Science students follow a meticulously planned and sequenced curriculum, designed to simply to allow them to learn more. Our strategy helps them remember more by building on previous knowledge, with the hope that their achievements will be reflected in their qualification attainment"

Year 7

Unit Title	Unit Overview	Prior Knowledge / skills	New Learning
Unit 1 – Digital Literacy	You will explore the basic foundations of digital literacy and get to grips with their new school network.	 Basic hardware understanding Basic hardware use Understanding of secure password and username needs 	 Make use of the school network for day to day computational tasks Awareness of basic formatting and word processing. Make use of web browser facilities and an awareness of online safety
Unit 2 – Under the Hood	You will begin to learn about what exactly is inside of a computer and how the different parts work together to process data	 To be able to name basic input and output devices. An understanding that the computer is a machine used to process data An understanding of input, process and output. 	 To name the components within the computer To be able to explain how each of these devices interact What affects the performance of the computer?
Unit 3 – Algorithms	You will drive into the world of computational thinking. An algorithm is a plan, a set of step-by-step instructions to solve a problem. If you can tie shoelaces, make a cup of tea, get dressed or prepare a meal then you already know how to follow an algorithm.	 To follow a basic instruction set To be able to identify decisions in your everyday life To understand the CPU and RAM and each use in a computer 	 To be able to write a set of precise instructions to complete the task To translate this into a flowchart To understand the importance of pattern recognition and sub programs.
Unit 4 – Visual Programming	Discover the power of visual programming languages. Instead of writing code, you'll use visual elements and blocks to create programs. Learn to design intuitive user interfaces, create animations, and develop interactive applications	•	•

	by connecting blocks together.		
	Unlock the potential of coding		
	through a graphical approach.		
Unit 5 – P5.JS	Get hands-on with creative coding	•	•
	using P5.JS, a JavaScript library.		
	You'll explore visual and interactive		
	programming, creating animations,		
	games, and interactive web		
	experiences. P5.JS offers a simple		
	syntax and powerful features,		
	allowing you to bring your artistic		
	and computational ideas to life in		
	the browser.		
Unit 6 – E-Safety	Explore the importance of online	•	•
	safety and responsible digital		
	citizenship. Learn about potential		
	online risks, such as cyberbullying,		
	identity theft, and phishing.		
	Understand how to protect personal		
	information, navigate social media		
	responsibly, and engage in safe		
	online communication. Develop		
	strategies to promote a secure and		
	ethical online presence.		

Year 8

Unit Title	Unit Overview	Prior Knowledge / skills	New Learning
Unit 7 - Visual	Take your visual programming skills to	•	•
Programming	the next level. Build upon the basics and		
Intermediate	delve into more advanced concepts and		
	techniques. Explore topics like event-		
	driven programming, object-oriented		
	design, and advanced user interface		
	development. Create visually appealing		
	and interactive applications using tools		
	like Scratch.		
Unit 8 - Graphics	Examine the ethical considerations	•	
and Ethics	surrounding graphics and visual media.		
	Explore the impact of digital		
	manipulation, image rights, and		
	copyright infringement. Discuss the		
	ethical implications of using graphics in		
	advertising, media, and entertainment.		
	Analyse the role of graphic designers in		
	promoting inclusive and ethical		
	practices. Gain a deeper understanding		
	of the ethical responsibilities in the		
	creation and use of visual content.		
Unit 9 - Python	Dive into the versatile world of Python		•
Programming	programming. Learn the fundamentals		
	of Python syntax, data types, control		
	structures, and functions. Explore		
	object-oriented programming concepts		

	and modular design principles. Develop skills in file handling, exception handling, and working with libraries and modules. Gain practical experience in solving problems and building applications using the Python programming language.		
Unit 10 - Computer	Discover the foundations of computer	•	•
Logic	logic and digital circuits. Explore		
	Boolean algebra, logic gates, and truth		
	tables. Learn how to design and analyse		
	combinational and sequential circuits.		
	Dive into topics such as binary		
	arithmetic, memory units, and		
	computer organization. Gain a deeper		
	understanding of how computers		
	process and manipulate information at		
	the fundamental level of logic.		
Unit 11 - Python	Take your Python programming skills to	•	•
Intermediate	the next level. Explore more advanced		
	topics such as data structures, loops		
	and algorithms. Develop proficiency in		
	handling exceptions, working with files,		
	and interacting with databases.		
	Enhance your problem-solving abilities		
	through hands-on projects and coding		
	challenges.		

Year 9

Unit Title	Unit Overview	Prior Knowledge / skills	New Learning
Unit 12 - HTML	Delve into the world of web development with		
and Web	HTML. Learn the fundamentals of HTML		
	markup, including tags, attributes, and		
	elements. Explore the structure and		
	organization of web pages, creating layouts,		
	adding multimedia content, and styling with		
	CSS. Discover responsive design principles,		
	accessibility considerations, and best practices		
	for creating user-friendly websites. Gain		
	hands-on experience in building and		
	publishing web pages.		
Unit 13 - Cyber	Explore the field of cybersecurity and the		
Security	measures to protect computer systems and		
	networks from unauthorized access, attacks,		
	and data breaches. Learn about different		
	types of cyber threats, such as malware,		
	phishing, and social engineering.		
Unit 14 – Sound	Immerse yourself in the world of sound		
Production	production and audio engineering. Learn the		
	principles of sound, including frequency and		
	amplitude. Explore recording techniques and		
	mixing strategies. Dive into topics such as		
	sound editing, effects processing, and sound		
	synthesis. Develop skills in manipulating audio		
	to create professional-quality sound		
	productions.		

Unit 15 –	Step into the captivating realm of animation.	
Animation	Learn the principles of animation, including	
	timing, spacing, and movement. Explore	
	different animation techniques, such as	
	traditional hand-drawn animation, stop	
	motion, and computer-generated animation.	
	Develop storytelling skills and create engaging	
	animations that entertain and communicate	
	effectively.	
Unit 16 – P5.JS	Build upon your knowledge of P5.JS and	
Intermediate	further explore the creative possibilities of this	
	JavaScript library. Dive deeper into advanced	
	topics such as interactivity, animation, and	
	responsive design. Learn to work with external	
	data sources, create interactive visualizations,	
	and integrate multimedia elements. Explore	
	more complex coding concepts and	
	techniques to enhance your ability to create	
	engaging and interactive web experiences	
	using P5.JS.	

GCSE Computer Science

OCR's GCSE in Computer Science is both engaging and practical, encouraging creativity and problem solving. It encourages you to develop your understanding and application of the core concepts in computer science. You will also analyse problems in computational terms and devise creative solutions by designing, writing, testing and evaluating programs. OCR's GCSE (9–1) in Computer Science consists of two compulsory components that are externally assessed.

Component 01: Computer systems

Introduces you to the central processing unit (CPU), computer memory and storage, data representation, wired and wireless networks, network topologies, system security and system software. It also looks at ethical, legal, cultural and environmental concerns associated with computer science.

- This is a compulsory component.
- It is worth 80 marks, representing 50% of the total marks for the GCSE (9–1).
- This component is an externally assessed written examination testing AO1 and AO2.
- The examination lasts 1 hour 30 minutes.
- All the questions are mandatory.
- The question paper will consist of short and medium answer questions. There will also be one 8-mark extended response question. This question will enable students to demonstrate the ability to construct and develop a sustained line of reasoning.

Component 02: Computational thinking, algorithms and programming

You apply knowledge and understanding gained in component 01. You will develop skills and understanding in computational thinking: algorithms, programming techniques, producing robust programs, computational logic and translators.

- This is a compulsory component.
- It is worth 80 marks, representing 50% of the total marks for the GCSE (9–1).
- This component is an externally assessed written examination testing AO1, AO2 and AO3.
- The examination lasts 1 hour 30 minutes and is formed of two sections.
- All the questions are mandatory.
- Section A is worth 50 marks, and assesses students' knowledge and understanding of concepts of Computer Science. Students then apply these to problems in computational terms, where they may use an algorithmic approach.
- Section B is worth 30 marks, and assesses students' Practical Programming skills and their ability to design, write, test and refine programs.

Unit Title	Unit Overview	Prior Knowledge / skills	New Learning
Unit 1 - Inside the	Explore the inner workings of a computer		
Computer	system. Learn about the components that make		
	up a computer, including the CPU, memory,		
	storage, and peripherals. Understand how data		
	is represented and processed within the		
	computer. Dive into topics such as binary		
	representation, Boolean logic, and the fetch-		
	decode-execute cycle. Gain insight into the		
	architecture and operation of computers at a		
	fundamental level.		
Unit 2 - The workings	Dive into the intricate workings of the Central		
of the CPU	Processing Unit (CPU). Learn about the		
	components and functions of the CPU, including		
	the control unit, arithmetic logic unit (ALU), and		
	registers. Explore the fetch-decode-execute		
	cycle and understand how instructions are		
	executed. Gain insights into concepts such as		
	clock speed, cache memory, and pipelining.		
	Develop an understanding of how the CPU		
	interacts with other components of a computer		
	system.		
Unit 3 - Binary Logic	Explore the fundamentals of binary logic and its		
	applications in computing. Learn about Boolean		
	algebra and logic gates, including AND, OR, and		
	NOT gates. Understand how these gates are		
	combined to create more complex circuits.		
	Explore truth tables and logical operations. Dive		

	into topics such as logic gate diagrams, Boolean
	expressions, and simplification techniques.
	Develop skills in designing and analysing digital
	circuits using binary logic.
Unit 4 Data	, ,
Unit 4 - Data	Gain an understanding of how data is
Representation	represented and stored in computer systems.
	Explore different number systems, including
	binary, decimal, and hexadecimal. Learn about
	data formats such as ASCII and Unicode for
	representing characters. Dive into topics like
	binary arithmetic, two's complement
	representation, and fixed-point and floating-
	point numbers. Understand the concept of data
	compression and its impact on storage
	efficiency. Develop skills in converting and
	manipulating data representations in computer
	systems.
Unit 5 - Algorithms	Dive into the world of algorithms and
· ·	computational thinking. Learn the fundamental
	concepts and techniques used to solve
	problems algorithmically. Understand algorithm
	design strategies such as iteration, recursion,
	and divide-and-conquer. Explore algorithm
	efficiency and analysis, including Big O notation.
	Learn about searching and sorting algorithms,
	data structures, and algorithmic problem-
	solving techniques. Develop skills in designing,
	implementing, and analysing algorithms to
	solve real-world problems.
	Solve real-world problems.

Unit 6 - Computational	Develop essential computational thinking skills.	
Thinking	Understand the core principles and strategies	
	used to tackle complex problems. Explore	
	abstraction, decomposition, pattern	
	recognition, and algorithmic thinking. Learn to	
	break down problems into smaller, manageable	
	parts and develop step-by-step solutions. Apply	
	computational thinking techniques to a variety	
	of contexts, such as data analysis, simulations,	
	and automation. Develop critical thinking and	
	problem-solving abilities that are applicable	
	across various disciplines.	
Unit 7 - Defensive	Explore the principles of defensive design in	
Design	software development. Understand the	
	importance of designing software systems that	
	are robust, secure, and resistant to errors and	
	vulnerabilities. Learn techniques for handling	
	exceptions, input validation, and error handling.	
	Dive into topics such as defensive programming,	
	code review, and testing strategies. Develop	
	skills in writing resilient and secure code that	
	can withstand unexpected situations and	
	potential threats.	
Unit 8 - System	Gain insight into the role and functions of	
Software	system software in computer systems. Explore	
	operating systems, their components, and their	
	interaction with hardware and applications.	
	Learn about memory management, process	
	scheduling, file systems, and device drivers.	
	Dive into topics such as system utilities,	

	software updates, and system security. Understand the importance of system software	
	in providing an efficient and reliable computing environment.	
Unit 9 - Networking	Explore the fundamentals of computer networking. Learn about network architectures, protocols, and technologies. Understand the layers of the TCP/IP models. Explore topics such as IP addressing, subnetting, routing, and switching. Dive into network security, including firewalls, VPNs, and intrusion detection systems. Gain hands-on experience in configuring and troubleshooting networks. Develop an understanding of network management and the importance of effective communication and collaboration in network environments.	
Unit 10 – Ethical and Moral Computing	Delve into the ethical and moral considerations related to computing and technology. Explore the impact of technology on society, privacy, and individual rights. Discuss topics such as intellectual property, copyright infringement, and digital rights management. Understand ethical issues related to data collection, surveillance, and artificial intelligence. Explore professional codes of ethics and the responsibilities of individuals working in the computing field. Develop critical thinking skills to navigate ethical dilemmas and make informed decisions in the realm of computing.	

Programming at GCSE

Unit Title	Unit Overview	Prior Knowledge / skills	New Learning
Unit 1 – The	Lay the groundwork for programming in		
foundations	Python. Learn the basic syntax, data types,		
	and control structures of the language.		
	Understand how to write and execute		
	Python programs. Explore concepts such as		
	variables, operators, conditionals, loops, and		
	functions. Develop problem-solving skills and		
	gain hands-on experience in writing simple		
	programs. Establish a solid foundation in		
	Python programming for further learning		
	and exploration.		
Unit 2 – Efficient	Master the art of writing efficient loops in		
Loops	Python. Explore different loop structures,		
	including while loops and for loops. Learn		
	techniques to optimize loop performance,		
	such as loop control statements and loop		
	termination conditions. Dive into topics such		
	as nested loops, loop algorithms, and loop		
	design patterns. Develop skills in designing		
	and implementing efficient loops to process		
	large amounts of data and solve complex		
	problems effectively.		
Unit 3 – Data	Dive into the world of data structures in		
structures	Python. Explore fundamental data structures		
	such as lists, tuples, dictionaries, and sets.		
	Learn about their properties, operations,		

	and use cases. Understand how to		
	manipulate and traverse these data		
	structures effectively. Dive into more		
	advanced data structures such as stacks,		
	queues, and linked lists. Gain hands-on		
	experience in implementing and utilizing		
	data structures to organize and manage data		
	efficiently in your Python programs.		
Unit 4 – Reusable	Learn the power of reusable functions in		
Functions	Python programming. Understand the		
	concept of functions and their role in		
	modular programming. Explore function		
	definition, parameter passing, and return		
	values. Learn how to design and implement		
	functions to perform specific tasks and solve		
	problems. Dive into topics such as function		
	composition, recursion, and function		
	libraries. Gain proficiency in creating		
	reusable functions that enhance code		
	organisation, readability, and reusability in		
	your Python programs.		

A-Level Computer Science

Unit Title	Unit Overview	Prior Knowledge / skills	New Learning
Unit 1 - Components	Explore the essential components that make up a		
of a Computer	computer system. Learn about the CPU, memory,		
	storage devices, input/output devices, and the		
	motherboard. Understand the role of each		
	component in data processing and system		
	operation. Dive into topics such as CPU		
	architecture, memory hierarchy, and peripheral		
	connectivity. Gain insights into the interplay		
	between hardware and software components to		
	form a functioning computer system.		
Unit 2 - System	Gain a deep understanding of system software in		
Software	the context of computer systems. Explore		
	operating systems and their functionalities,		
	including process management, memory		
	management, and file systems. Learn about		
	system utilities, device drivers, and virtualization.		
	Dive into topics such as system security, software		
	updates, and system administration. Understand		
	the role of system software in managing and		
	optimizing computer resources and providing a		
	stable and secure computing environment.		
Unit 3 - Binary Logic	Explore the foundations of binary logic and		
and Arithmetic	arithmetic in computer systems. Learn about		
	Boolean algebra, logic gates, and their		
	applications in digital circuits. Understand binary		
	addition, subtraction, multiplication, and division.		

	Dive into topics such as bitwise operations,	
	Boolean functions, and logic simplification.	
	Explore the concept of binary representation and	
	its significance in computer architecture. Gain	
	proficiency in performing binary logic operations	
	and arithmetic calculations essential for	
	computer science and digital systems.	
Unit 4 - Networking	Delve into the realm of networking and web	
and Web	development. Learn about network protocols,	
Development	architectures, and topologies. Understand the	
	layers of the TCP/IP models. Explore topics such	
	as IP addressing, subnetting, routing, and	
	switching. Dive into web development, including	
	HTML, CSS, and JavaScript. Learn about client-	
	server architecture, HTTP protocols, and web	
	security. Gain practical skills in designing and	
	implementing networked systems and creating	
	dynamic web applications.	
Unit 5 - Computational	Develop advanced computational thinking skills.	
Thinking	Explore algorithmic problem-solving, abstraction,	
	decomposition, pattern recognition, and	
	algorithm design. Understand different	
	algorithmic paradigms such as divide and	
	conquer, greedy algorithms, and dynamic	
	programming. Dive into topics like complexity	
	analysis, algorithm efficiency, and algorithmic	
	problem-solving strategies. Gain hands-on	
	experience in solving complex problems using	
	computational thinking techniques. Apply	
	computational thinking skills to various domains	

	and develop the ability to design efficient and	
	scalable algorithms.	
Unit 6 - Advance	Take your programming skills to the next level	
Programming	with advanced programming concepts and	
	techniques. Explore object-oriented	
	programming (OOP) principles and design	
	patterns. Learn about inheritance, polymorphism,	
	encapsulation, and abstraction. Dive into topics	
	such as exception handling, file I/O, and	
	multithreading. Understand advanced data	
	structures and algorithms for efficient problem-	
	solving. Gain practical experience in developing	
	complex software applications using advanced	
	programming techniques. Enhance your code	
	quality, reusability, and maintainability through	
	advanced programming practices.	
Unit 7 - Object	Dive into the principles and concepts of object-	
Oriented	oriented programming (OOP). Understand the	
Programming	fundamental concepts of classes, objects,	
	inheritance, and polymorphism. Explore	
	encapsulation and abstraction to create modular	
	and reusable code. Learn about the importance	
	of class design and class relationships. Dive into	
	topics such as method overloading, method	
	overriding, and interfaces. Gain hands-on	
	experience in designing and implementing object-	
	oriented solutions to complex programming	
	problems. Develop proficiency in writing robust	
	and scalable object-oriented programs.	

Unit 8 - Legal, Ethical	Explore the legal, ethical, and moral aspects of	
and Moral	computer science and technology. Understand	
	the legal framework surrounding technology,	
	including intellectual property rights, data	
	protection, and cybercrime legislation. Dive into	
	ethical considerations related to privacy, security,	
	and responsible use of technology. Discuss moral	
	issues such as AI ethics, social impact of	
	technology, and ethical decision-making. Explore	
	professional codes of conduct and ethical	
	frameworks in the field of computer science.	
	Develop critical thinking skills to analyse and	
	navigate the complex ethical and legal challenges	
	in the digital world.	
Unit 9 - Data	Deepen your understanding of data structures in	
Structures	computer science. Explore advanced data	
	structures such as trees, graphs, and hash tables.	
	Learn about their properties, operations, and	
	applications. Dive into topics such as traversal	
	algorithms, searching and sorting techniques, and	
	graph algorithms. Understand the trade-offs	
	between different data structures in terms of	
	time and space complexity. Gain practical	
	experience in implementing and utilizing complex	
	data structures to efficiently store and	
	manipulate large amounts of data.	
Unit 10 - Algorithms	Explore advanced algorithms and algorithmic	
	design techniques. Dive deeper into algorithm	
	analysis and complexity theory. Learn about	
	algorithmic paradigms such as divide and	

	conquer, greedy algorithms, and dynamic	
	programming. Explore advanced topics such as	
	graph algorithms, string algorithms, and	
	optimization algorithms. Understand algorithmic	
	problem-solving strategies and gain proficiency in	
	designing efficient algorithms to solve complex	
	computational problems. Develop critical thinking	
	and analytical skills required to analyse, evaluate,	
	and implement advanced algorithms effectively.	
Unit 11 - Improving	Focus on enhancing the performance of software	
Performance	systems. Explore techniques for optimizing code,	
	improving efficiency, and reducing resource	
	usage. Learn about profiling and benchmarking to	
	identify performance bottlenecks. Dive into	
	topics such as algorithmic optimisation, data	
	structure selection, and caching strategies.	
	Understand the impact of hardware architectures	
	and system configurations on performance. Gain	
	practical experience in applying performance	
	optimization techniques to real-world software	
	projects. Develop skills to analyse, diagnose, and	
	improve the performance of software systems.	
Unit 12 - Number	Explore the various number representations used	
Representation	in computer systems. Learn about binary,	
	decimal, and hexadecimal number systems.	
	Understand the principles of fixed-point and	
	floating-point number representations. Dive into	
	topics such as integer and floating-point	
	arithmetic, rounding, and precision. Explore the	
	representation of negative numbers, two's	

	complement, and sign-magnitude formats. Gain	
	insights into the limitations and trade-offs of	
	different number representations. Develop skills	
	in converting and manipulating numbers in	
	different representations in the context of	
	computer science.	
Unit 13 - Big O	Delve into the concept of algorithmic complexity	
	and analysis. Understand the Big O notation and	
	its significance in evaluating algorithm efficiency.	
	Learn how to analyse the time complexity and	
	space complexity of algorithms. Explore different	
	types of algorithmic growth rates, such as	
	constant, logarithmic, linear, quadratic, and	
	exponential. Dive into topics such as worst-case,	
	best-case, and average-case analysis. Gain	
	practical experience in comparing and evaluating	
	the efficiency of different algorithms using Big O	
	notation. Develop skills in selecting and designing	
	algorithms based on their performance	
	characteristics.	
Unit 14 - Using Data	Focus on the practical implementation and	
Structures	utilization of data structures in computer science.	
	Deepen your understanding of various data	
	structures such as arrays, linked lists, stacks,	
	queues, trees, and graphs. Explore their	
	properties, operations, and applications. Learn	
	how to choose the appropriate data structure for	
	different scenarios and problem domains. Dive	
	into topics such as data structure manipulation,	
	traversal algorithms, and efficient data storage.	

	Gain hands-on experience in implementing and	
	using data structures to store, retrieve, and	
	manipulate data effectively in your programs.	
Unit 15 - Programming	Engage in a comprehensive programming project	
Project	that allows you to apply your knowledge and	
	skills in a practical context. Undertake a	
	substantial programming task, such as developing	
	a software application or system, from concept to	
	completion. Gain experience in project planning,	
	requirements analysis, design, implementation,	
	testing, and documentation. Apply programming	
	principles, algorithms, data structures, and	
	software development methodologies to create a	
	functioning and well-structured project. Develop	
	critical thinking, problem-solving, and project	
	management skills through the execution of the	
	programming project.	